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For energy recovery linacs (ERLs) the energy spread induced by wake-
fields grows throughout acceleration and decelleration. Too much fractional
momentum spread at low energy will complicate beam transport. This note
uses some analytical results and a simple model of surface roughness corre-
lation functions to obtain a wakefield formula that is very fast and easy to
compute.

The resistive wall wake will be used for comparison. For resistive wall we
used the low frequency approximation for the longitudinal wake potential
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where Z0 = 377Ω, s is the lag distance, H(s) = 1 for s > 0 and is zero
otherwise, c is the speed of light, L is the length of the resistive section, b is the
pipe radius, and ρe is the electrical resisitivity. When applying equation (1)
and in formulas below we use integration by parts to obtain actual voltages.
The numerics are very straightforward and will not be discussed.

For the wake potential due to surface roughness we used Stupakov’s for-
mula [1]. Define

W (s) =
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H(s)Re(Φ(s)).

In MKS units
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where the angular brackets denote statistical averages and

ŝ(kx, kz) =
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with surface roughness h(x, z) where z is measured along the beam direction.
For h = h0 cos kz one has

< |ŝ(kx, kz)|2 >=
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and
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Figures 1 and 2 show the input and results of an ABCI [2] simulation and
equation (4). For these parameters the agreement is excellent. Other pa-
rameters have been checked and the amplitude of the wake is always good
within a factor of 2. With this level of agreement it seems likely the the-
ory is reasonably accurate. We go on to consider the wake due to surface
roughness.

We need a statistical model of wall roughness to get< ŝ2 >. For simplicity
we take a stationary random process and a correlation function given by

< h(x1, z1)h(x2, z2) > = C(x1 − x2, z1 − z2) (5)
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where h0 is the rms distortion, σz is the correlation length along the axis
of the pipe and σx is along the circumference. Using the Wiener-Khinchin
theorem
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Inserting (8) in (2) and doing the kx integration yields.
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Figure 1: geometry to compare Stupakov’s formula with ABCI. The red
curve is the ideal geometry. The blue staircase is a 10 fold zoom of an actual
convolution used in the simulation.

In (9) the square root has a positive real part and a negative imaginary
part for s > 0. The integral is done numerically. Figure 3 shows the net
voltage for a pipe of radius 1 cm and length equal to 4 passes up and 4
passes down in CBETA. Generalizing equation (2) to flat chambers has been
considered by Stupapakov and Bane [4] who employed earlier work [5]. The
main point here is that the surface impedance due to wall roughness is a
spatially localized thing. We can take an effective surface impedance as a
function of frequency and use impedance boundary conditions. Figure 8 in [3]
shows the low frequency, longitudinal resistive wall wake for elliptical pipes.
For all values the impedance is within 10% of the wake for a round pipe with
the smaller apeture. It is likely we will not know < ŝ2 > to better than 10%.
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Figure 2: wakefields from Stupakov’s formula and ABCI.
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Figure 3: bunch current and induced voltage
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